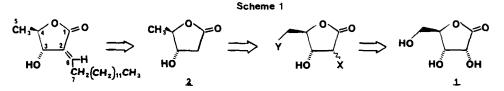
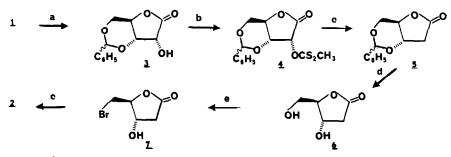
THE USE OF D-RIBONOLACTONE IN ORGANIC SYNTHESIS. I. TOTAL SYNTHESIS OF (-)-LITSENOLIDES C_1 AND C_2 .

Shin-Yih Chen and Madeleine M. Joullié*

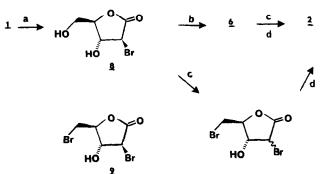

Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104

ABSTRACT D-Ribonolactone, an inexpensive, commercially available sugar, has been transformed stereoselectively into naturally occurring lactones, the litsenolides C_1 and C_2 .

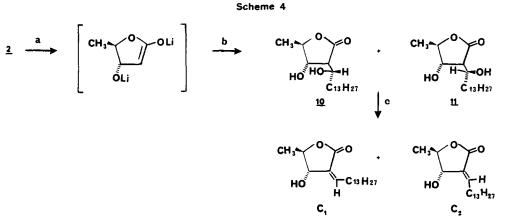

During the course of chemical studies on Litsea Japonica (Thunb) Juss., a plant from the Lauraceae family, Ishii and coworkers¹ isolated six lactones identified as litsenolides A1, A2, B1, B2, and C1 and C2. These compounds are three pairs of β -hydroxy- γ methyl- α , β '-unsaturated γ -lactones having a hydrocarbon chain at the α , β '-position which is terminated by an allyl group (A series), a propargyl group (B series), or a methyl group (C series). The two components of each pair differ only in the cis or trans geometry at the α,β' double bond. The absolute geometry has been determined as S at the β -hydroxyl group (C-3) and R at the γ -methyl group (C-4). Similar lactones have been isolated from other plants belonging to the Lauraceae family.² Compounds containing exocyclic double bonds have been of interest because of their potential tumor inhibition activity.³ Therefore, the synthesis of structurally related y-lactones isolated from plants of the Lauraceae family has been the aim of several research groups. A short, stereoselective synthesis of (+) litsenolide C_1 from α -bromo- γ -valerolactone was reported by Wollenberg.⁴ Katzenellenbogen and co-workers⁵ devised a general method for the synthesis of α -alkylidene- β -hydroxy- γ -methylenebutyrolactones including epilitsenolides. A five-step stereoselective synthesis of (+)litsenolides C_1 and C_2 from ethyl phenylthioacetate and 1-bromotetradecane was also described.⁵ A stereospecific route to litsenolides A_2 , B_2 , and C_2 was devised by Kende and Toder.⁶ Although several stereoselective approaches to the litsenolides have been reported, introduction of chirality at the β - and γ -positions has not been accomplished.

As a continuation of our investigations on the utilization of sugars as chiral intermediates in the synthesis of natural products,⁷ we chose D-ribonolactone as a precursor for the α -alkylidene- β -hydroxybutyrolactone moiety of the Lauraceae lactones. D-Ribonolactone is a promising starting material because of its low cost, availability and versatility. We now wish to report the total synthesis of (-)-litsenolides C₁ and C₂ using the chirality of D-ribonolactone (1). A retrosynthetic analysis is shown in Scheme 1.

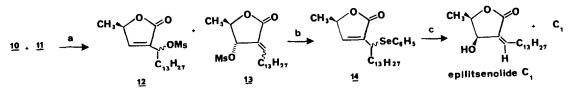
5027



The first target was the key intermediate 2,5-dideoxy-D-erythro-pentono- γ -lactone (2). The first approach to this compound is seen on Scheme 2. Treatment of <u>1</u> with benzalde-**Scheme 2**


^aC₆H₅CHO, HCl; ^bNaH, CS₂, MeI, DMF; ^cn-Bu₃SnH, Tol, Δ ; ^dTFA, CHCl₃, H₂O; ^eCBr₄, P(C₆H₅)₃, MeCN hyde and concentrated hydrochloric acid for 7 h afforded the known benzylidene derivative <u>3</u> in 92.7% yield, mp 230-231.5°C, $[\alpha]_D^{23} = -177.0°$ (c 2.37, DMF); lit⁸ 233-235.5°C, $[\alpha]_D^{23} = -174.1°$. The reaction of <u>3</u> with carbon disulfide in the presence of sodium hydride in dry DMF was followed by alkylation with methyl iodide to give the corresponding xanthate (<u>4</u>)⁹ in 75.5% yield, mp 145-146°C, $[\alpha]_D^{23} = -314.3°$ (C 2.01, CHCl₃). Reduction of <u>4</u> with trin-butyltin hydride afforded <u>5</u> in 92.5% yield, ⁹ mp 139-139.5°C, $[\alpha]_D^{23} = -172.3°$ (c 1.71, CHCl₃). Deprotection of <u>5</u> with 50% aqueous trifluoroacetic acid in chloroform at 70°C for 10 h gave <u>6</u>¹⁰ which after selective bromination of the primary alcohol with carbon tetrabromide and triphenyl phosphine in acetonitrile afforded <u>7</u>¹⁰ in 30% yield, $[\alpha]_D^{22} = +13.8°$ (c 1.70, acetone). Debromination of <u>7</u> with tri-n-butyltin hydride¹¹ gave <u>2</u>,⁹ in 91.7%, bp 108-110°C (0.025 mm Hg, Kugelrohr), $[\alpha]_D^{23} = +10.9°$ (c 2.42, CHCl₃). Alternate routes to <u>2</u> are shown in Scheme 3.

Scheme 3


^a(1) 35% HBr, HOAc; (2) MeOH; ^bPd/C, H_2 , Et₃N, EtOAc; ^cCBr₄, P(C₆H₅)₃, MeCN; ^dn-Bu₃SnH

Treatment of <u>1</u> with a $\sim 35\%$ solution of hydrogen bromide in acetic acid for 4 h at room temperature was followed by deacetylation with methanol. After work up of the reaction mixture, 2,5-dibromo-2,5-dideoxy-D-arabinono- γ -lactone (<u>9</u>) was obtained from solution, 4.3% yield.¹⁰ Continuous extraction of the solution with ether overnight afforded 2-bromo-2-deoxy-arabinono- γ -lactone (<u>8</u>), 65.1% yield, mp 79-81°C, [α]_D²² = +70.3° (c 3.85, ethyl acetate); lit¹⁰ mp 79-81°C, [α]_D²¹ = + 72° (c 4.1, ethyl acetate). The absolute configuration of <u>8</u> was confirmed by X-ray crystallography.¹² Hydrogenolysis of <u>8</u> yielded 2-deoxy-D-erythropentono- γ -lactone (<u>6</u>), followed by the selective bromination described before gave <u>7</u>¹⁰ in 71.8% yield. Tri-n-butyltin hydride reduction of <u>7</u> or <u>9</u> gave the identical key intermediate <u>2</u>. The conversion of <u>2</u> into litsenolides C₁ and C₂ is shown in Scheme 4.

^a2 eq. LDA, THF, -78° C; ^b(1) 1 eq. ZnC1₂, THF; (2) CH₃(CH₂)₁₂CHO, THF; ^c200^oC

Generation of the dilithium enolate of $\underline{2}$, at -78° C, with lithium diisopropylamide in THF, followed by subsequent addition of zinc chloride in THF and myristyl aldehyde at -50° C afforded a diastereomeric mixture of α , β '-dihydroxyl derivatives <u>10</u> and <u>11</u> (59.8% yield, $[\alpha]_D^{23} = +12.66^{\circ}$ (c 1.23, CHCl₃).⁹ Compounds <u>10</u> and <u>11</u> were converted to the corresponding litsenolides C₁ and C₂ in 15% yield, by heating at 200°C. The physical properties of the synthetic litsenolide were identical in every respect with those of the natural products.¹ Litsenolide C₁ was prepared in better yield using Wollenberg's procedure.⁴ The diastereomeric mixture of <u>10</u> and <u>11</u> in CH₂Cl₂ was treated with triethylamine and 2 eq. of methanesulfonyl chloride at 0°C. Chromatography on silica gel (ether:petroleum ether, 2:1) afforded compounds <u>12</u>,⁹ $[\alpha]_D^{22} = -7.3^{\circ}$ (c 5.7, CHCl₃) and <u>13</u> in a 10:1 ratio (100% yield). This mixture was converted to <u>14</u>⁹ (78% yield) with 1.5 eq. of sodium phenylselenide.⁴ Oxidation of <u>14</u> with 30% hydrogen peroxide in CH₃CN gave litsenolide C₁ and epilitsenolide C₁ in a 7:1 ratio (85% yield). These reactions are shown in Scheme 5.

^aMsCl, Et₃N, CH₂Cl₂, 0^oC, 15 min.; ^bNaSeC₆H₅, EtOH, -20^oC, 1 h; ^C30% H₂O₂, CH₃CN, -20^oC

<u>Acknowledgment</u> We thank the Dow Chemical Company Foundation for generous support of this work.

REFERENCES AND NOTES

- 1. K. Takeda, K. Sakurawi, and H. Ishii, Tetrahedron, 1972, 21, 3757.
- 2. J.C. Martinez, V.M. Yoshida, and O.R. Gottlieb, Phytochemistry, 1981, 20, 459.
- 3. E. Fugita and Y. Nagao, Bioorganic Chemistry, 1977, 6, 287.
- 4. R.H. Wollenberg, Tetrahedron Lett., 1980, 3139.
- 5. S.W. Rollinson, R.A. Amos, and J.A. Katzenellenbogen, J.Amer.Chem.Soc., 1981, 103, 4114.
- 6. A.S. Kende and B.H. Toder, J.Org.Chem., 1982, 47, 163.
- 7. P.C. Wang and M.M. Joullié, J.Org.Chem., 1980, 45, 5359.
- 8. H. Zinner, H. Voigt, and J. Voigt, Carbohyd.Res., 1968, 7, 39.
- 9. All new compounds gave satisfactory elemental analyses and spectral data. Selected spectral data: ¹H NMR (CDCl₃, 250 MHz) ⁶; <u>4</u>, 2.64 (s,3H), 4.42 (dd, 1H, J_{5.5}, = 13.6, $J_{4,5} = 1.5$, 4.62 (d,1H), 4.73 (dd,1H, $J_{3,4} = 8.1$), 4.97 (dd,1H, $J_{2,3} = 2.9$), 5.81 (s,1H), 6.45 (d,1H), 7.35-7.55 (m,5H); 5, 2.63 (dd,1H,J_{2,2} = 15.8, J_{2,3}=3.7), $3.05 (dd, 1H, J_{2,3} = 2.6), 4.23 (dd, 1H, J_{4,5} = 1.8, J_{5,5'} = 12.9), 4.58 (q, 1H),$ 4.59 (dd,1H,J_{3.4} = 1.1), 4.79 (ddd,1H), 5.76 (s,1H), 7.3-7.6 (m,5H); 7, 2.46 (dd, 1H, $J_{2,2'} = 18.0, J_{2,5} = 7.0), 2.99 (dd, 1H, J_{2,3} = 3.4), 3.70 (dd, 1H, J_{5,5'} = 3.4)$ 11.3, $J_{4,5} = 5.4$), 3.77 (dd,1H, $J_{4,5'} = 4.8$), 4.47 (m,1H, $J_{3,4} = 3.1$), 4.58 (m,1H), 4.93 (d,1H, $J_{3,3-0H} = 3.9$, D_20 exchangeable); <u>2</u>, 1.37 (d,3H, $J_{4,5} =$ 6.6), 2.53 (dd,1H, $J_{2,2'}$ = 18.0, $J_{2,3}$ = 3.6), 2.85 (dd,1H, $J_{2',3}$ = 6.5), 3.37 (d,1H, $J_{3,3-OH} = 4.4$, D_{2O} exchangeable), 4.24 (m,1H), 4.52 (dq,1H, $J_{2.4}$ = 2.8); 10, 0.88 (t,3H,J=6.9), 1.30 (bs,22H), 1.43 (d,3H, J_{4.5} = 6.0), 1.68 (m,2H), 2.69 $(dd, 1H, J_{2.6} = 3.4, J_{2.3} = 8.5), 3.4, 3.5$ (bs, 2H), 4.14 (m, 1H), 4.18 (m, 1H), 4.26 (dq,1H, J4,5 = 6.1, J3,4 = 7.3); 11, (major isomer) 0.88 (t,3H, J19,20 \approx 6.5), 1.31 (bs,22H), 1.43 (d,3H, J_{3,5} = 6.2), 1.85 (m,2H), 2.65 (dd,1H, $J_{2,6} = 3.8, J_{2,3} = 9.3$, 3.86 (m,2H), 3.97 (dd,1H), 4.25 (dq,1H, $J_{3,4} = 7.7$), 4.40 (bs,1H); 12, 0.86(t,3H,J~6.0), 1.1-1.6(m,22H), 1.96(m,2H), 3.06(s,3H), 5.12 (dq,1H), 5.36(m,1H), 7.42 (d,1H). 13, 0.86(t,3H), 1.2-1.6(m,22H), 1.18(d,minor), 1.19(d, major) (3H), 2.21(dt,2H), 3.06(s,3H), 4.83(q,major), 5.02(q,minor)(1H), 5.46(bs,1H), 7.20(dt,1H).
- 10. K. Bock, I. Lundt, and C. Pedersen, Carbohydrate Res., 1981, 90, 17.
- 11. Hydrogenolysis of 5-bromo-2,5-dideoxy-D-erythro-pentono-Y-lactone (7) in ethyl acetate and triethylamine over palladium on carbon gave a mixture of the expected lactone (2) and 3-hydroxypentanoic acid in a 1:2 ratio, in addition to triethylamine hydrobromide.
- 12. The X-ray crystallographic analysis was performed by Dr. P.J. Carroll and the details will be published somewhere else.

(Received in USA 5 July 1983)